
MA 3046 - Matrix Analysis
Laboratory Number 2

The Singular Value Decomposition (SVD)

There are three “classic” matrix factorizations in linear algebra, the LU decompo-
sition (which you should have seen in MA1043), the QR decomposition (which we shall
see later in this course), and the Singular Value decomposition (SVD). In the SVD, the
matrix A ∈ Cum×n is decomposed (factored):

A = UΣ VH

where U and V are unitary, and Σ is diagonal. The diagonal elements of Σ are

σi =
p
λi

where, by convention σ1 ≥ σ2 ≥ · · ·, and the λi are the (assured non-negative) eigenvalues
of AH A. The columns of V are called the right singular vectors, and are also the
eigenvectors of AH A. The columns of U , which are the so-called left singular vectors
of A, are related to the columns of V by

u(i) =
1

σi
Av(i) , σi 6= 0 .

The related, so-called Reduced SVD of A is

A = ÛΣ̂ V̂H

where Σ̂ is an r× r diagonal matrix of only the non-zero singular values, Û is m× r,
and V̂ is n× r. (Both Û and V̂ have orthonormal columns. However, in the reduced

SVD, this only means ÛH Û = I and V̂H V̂ = I. Because they are not square, however,
we can generally expect that Û ÛH 6= I and V̂ V̂H 6= I.)

The SVD plays a major role in both theoretical and practical matrix analysis and
computation. For example, the rank of A is precisely the number of non-zero singular
values. Moreover, in terms of the Euclidean norm:

kA k2 = σ1 = kAv(1) k2
Moreover, we can write the (reduced) SVD in block matrix form as:

A =

∙
u(1)

... u(2)
... . . .

... u(r)
¸

σ1 0 . . . 0
0 σ2 . . . 0
...

...
...
...
...

...
0 0 . . . σr



v(1)

H

v(2)
H

...
v(r)

H



=

∙
σ1u

(1)
... σ2u

(2)
... . . .

... σru
(r)

¸
v(1)

H

v(2)
H

...
v(r)

H
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But this last expression can be viewed as simply the product of a 1× r block row vector
by a r × 1 column vector, i.e. a block inner product. This produces

A = σ1u
(1) v(1)

H
+ σ2u

(2) v(2)
H
+ · · ·+ σru

(r) v(r)
H
=

rX
i=1

σiu
(i) v(I)

H

which is equivalent to expressing A as a sum of rank one matrices, each of which has
smaller Euclidean norm (i.e. σi) than all of its predecessors. Viewed slightly differently,
this decomposes A into a sum of rank one matrices of decreasing energy.

This last observation allows us to use the singular values to create approximations to
the original matrix. Specifically, if ν ≤ r

A(ν) =
h
u(1)

... · · · ... u(ν)
iσ1 · · · 0

...
. . .

...
0 · · · σν


 v

(1)T

...
...
...

v(ν)
T

 = νX
i=1

σiu
(i) v(i)

H

represents a so-called rank ν approximation to A. Moreover, we can show that the
Euclidean norm of the remaining terms, i.e.

k
rX

i=ν+1

σiu
(i) v(i)

H k = kA−A(ν) k2 = σk+1

i.e. the next largest singular value. Approximations built on this idea are commonly used
in signal and image processing, data compression, etc.
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Name:

MA 3046 - Matrix Analysis
Laboratory Number 2

The Singular Value Decomposition (SVD)

1. Link to the laboratory web page and download the file:

svdstuff.mat

to your laboratory directory.

2. Start MATLAB and load the data in svdstuff.mat. Specifically examine the 6 × 4
matrix:

a =
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3. Using MATLAB’s help capability, study the syntax of the eig( ) command until you
feel comfortable executing it. Then give the command

[ veig , d ] = eig( a0∗a)

and record both the eigenvalues for a0 ∗ a(where a is the matrix created in part 2):

and the associated eigenvectors

veig =





4. Using MATLAB’s sqrt() command, find the square roots of the eigenvalues found in
part 3 above
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5. Determine whether or not the eivenvectors (columns of veig) found in part 3 above are
or are not orthogonal?

Why should this either have or have not been expected?

6. Using MATLAB’s help capability, study the syntax of the svd() command until you
feel comfortable executing it. Then give the command

svd( a )
where a is the matrix from part 2, and record the results:

How do these values agree with theory when compared with those from part 5 above.

What, if anything, can you infer about the properties of a from these values?
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7. Next, give the command

[ u , s , v ] = svd( a )
where a is the matrix from part 2, and record the results:

u =





s =





u =
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8. Verify that, for the matrices u, s and v found in part 7:

(i) a = u ∗ s ∗ v0 to some reasonable order.

(ii) u0∗u = I to some reasonable order.

(iii) v0∗v = I to some reasonable order.

9. Compare the eigenvectors (veig) of a0 ∗ a as found in part 3 with the left singular
vectors (v) of a as determined in part 7 above. Explain any differences.
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10. Use MATLAB to find the Euclidean norm of the matrix a from part 2. Then compare
this value to the singular values of that same matrix as computed in part 6. Why, or why
not, should you have expected this result?

11. Give the MATLAB command

norm( a*v( : , 1 ))

and record the result.

Why, or why not, should you have expected this value?
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12. Compute

apar = u(:,1:3)∗s(1:3,1:3)∗v(:,1:3)0

ans =




What is this calculation actually doing? Compare this result to the original matrix a from
part 2 and its singular values as computed in part 6. Why, or why not, should the degree
to which they compare have been expected?
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